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Abstract
An infinite-dimensional Lie group of symmetries of the anisotropic Chew–
Goldberger–Low (CGL) plasma equilibrium equations is introduced. The
symmetries are used to construct families of new anisotropic plasma equilibria.
An infinite-dimensional family of transformations between solutions to the
isotropic magnetohydrodynamic (MHD) equilibrium equations and solutions
to the anisotropic CGL plasma equilibrium equations is presented. The
transformations depend on the topology of the original solutions and produce a
wide class of anisotropic plasma equilibrium solutions, including 3D solutions
with no geometrical symmetries.

PACS numbers: 52.30.Cv, 05.45.−a, 02.30.Jr, 02.90.+p

1. Introduction

The most important continuum plasma models are the isotropic magnetohydrodynamics
(MHD) equations [1] and the so-called anisotropic CGL (Chew–Goldberger–Low)
magnetohydrodynamics equations [2]. Both are derived from Boltzmann and Maxwell
equations under different isotropy assumptions.

The isotropic MHD approximation employs a scalar pressure P and is valid when the
mean free path of plasma particles is much less than the typical scale of the problem. When
the mean free path for particle collisions is large compared to the Larmor radius (i.e. in strongly
magnetized or rarified plasmas), the CGL approximation should be used, where the pressure is
a tensor depending on two parameters: p‖ and p⊥, which are interpreted as effective pressures
along the magnetic field (p‖) and in the transverse plane (p⊥).

Non-viscous incompressible and compressible MHD equations, as well as incompressible
CGL equations, are known to admit a variational formulation [3].

In the present paper we consider incompressible equilibrium plasma flows and static
configurations. In section 2, we present an infinite-dimensional set of transformations between
isotropic (MHD) and anisotropic (CGL) plasma equilibria. These transformations can be
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applied to any static plasma equilibrium and to a wide class of dynamic equilibria to yield
physically meaningful anisotropic equilibrium solutions.

The transformations depend on the topology of the original isotropic plasma equilibrium.
It is known that all isotropic non-viscous incompressible MHD equilibria (except Beltrami
flows) have a special topology—the plasma domain is filled with the nested two-dimensional
magnetic surfaces, on which magnetic field lines and plasma streamlines lie [4–7]. The
transformations depend on two arbitrary functions constant on magnetic surfaces. For field-
aligned equilibria with magnetic field lines closed or going to infinity, the transformations
break the geometrical symmetry of the initial solution.

The presented family of transformations has features different from those for Bäcklund
transforms for soliton equations. Unlike Bäcklund transforms, the new transformations have
explicit algebraic form and depend on all three spatial variables.

We show that the transformations derived in this paper produce the anisotropic plasma
equilibria that satisfy the necessary physical conditions and are stable with respect to the fire-
hose and mirror instabilities. In section 3, we construct exact anisotropic plasma equilibrium
solutions that model anisotropic astrophysical jets.

The new MHD → CGL equilibrium transformations can be applied to any known
analytical isotropic MHD models, such as Hill-vortex-like solutions [8, 9], to produce
corresponding anisotropic plasma equilibria with the same topology of magnetic surfaces.

The ideal (non-viscous) isotropic MHD equilibrium equations possess an infinite-
dimensional Abelian group of symmetries Gm [4, 5] that preserve the solution topology
but can break the geometrical symmetries. In section 4, we present the generalization of these
symmetries for the case of incompressible ideal anisotropic CGL plasmas. The symmetries
form an infinite-dimensional Abelian group G with 16 connected components.

2. Transformations between the MHD and CGL equilibria

In this section we present an infinite-dimensional family of transformations that turn isotropic
plasma equilibrium solutions into anisotropic (CGL) ones.

Section 2.1 deals with the dynamic equilibrium case (V2 > 0). Section 2.2 presents the
new transformations for static equilibria. In section 2.3, we discuss the necessary physical
conditions for a plasma equilibrium solutions and study the stability of anisotropic equilibrium
solutions that can be obtained by the application of the new transformations.

2.1. Transformations for dynamic equilibria

The equilibrium states of isotropic moving plasmas are described by the system of MHD
equilibrium equations, which under the assumptions of infinite conductivity and negligible
viscosity has the form [1]

ρV × curl V − 1

µ
B × curl B − grad P − ρ grad

V2

2
= 0 (2.1)

div ρV = 0 curl(V × B) = 0 div B = 0. (2.2)

Here V is the plasma velocity, B is the vector of the magnetic field induction, ρ is the
plasma density, P is the plasma pressure and µ is the magnetic permeability coefficient.

In the case of incompressible plasma, the equation

div V = 0 (2.3)
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is added to the above system; for a compressible case an appropriate equation of state must be
chosen. For example, it can be the adiabatic ideal gas equation of state:

P = ργ exp(S/cv) V · grad S = 0. (2.4)

Here γ is the adiabatic exponent, cv is the heat capacity at constant volume and S is the entropy
density.

In this paper we restrict our consideration to incompressible plasmas.
Incompressibility condition is widely used in the modelling of plasma media. For

example, it is a good approximation for subsonic plasma flows with low Mach numbers
M � 1,M2 = V2/(γP/ρ). For incompressible plasma the continuity equation div ρV = 0
implies V · grad ρ = 0, hence density is constant on plasma streamlines.

It is known [4–7] that all compact incompressible MHD equilibrium configurations,
except the Beltrami case curl B = αB, α = const, are spanned by two-dimensional magnetic
surfaces—the vector fields B and V are at every point tangent to magnetic surfaces.

When V‖B, magnetic surfaces may not be uniquely defined for unbounded configurations
with magnetic field lines going to infinity, as well as for configurations with closed magnetic
field lines.

For anisotropic plasmas with the Larmor radius small compared to the characteristic
dimensions of the system, the corresponding set of equilibrium equations is [2]

ρV × curl V − 1

µ
B × curl B = div P + ρ grad

V2

2
(2.5)

div ρV = 0 curl(V × B) = 0 div B = 0 (2.6)

where P is the pressure tensor with two independent parameters p‖, p⊥:

Pij = p⊥δij +
p‖ − p⊥

B2
BiBj i, j = 1, 2, 3. (2.7)

For this system to be closed, one needs to add to it two equations of state. In this paper
we will consider incompressible CGL plasmas: div V = 0.

Using vector calculus identities, the pressure tensor divergence may be rewritten in the
form

div P = grad p⊥ + τcurl B × B + τ grad
B2

2
+ B(B · grad τ) (2.8)

τ = p‖ − p⊥
B2

. (2.9)

Here τ is the anisotropy factor. Therefore, the system (2.5)–(2.6) can be rewritten as

ρV × curl V −
(

1

µ
− τ

)
B × curl B = grad p⊥ + ρ grad

V2

2
+ τ grad

B2

2
+ B(B · grad τ)

(2.10)

div V = 0 div B = 0 curl(V × B) = 0. (2.11)

The following theorem shows that there exist infinite-dimensional transformations that
map solutions of incompressible MHD equilibrium equations to incompressible anisotropic
(CGL) equilibria.
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Theorem 1. Let {V(r), B(r), P (r), ρ(r)} be a solution of the system (2.1)–(2.3) of
incompressible MHD equilibrium equations, where the density ρ(r) is constant on both
magnetic field lines and plasma streamlines (i.e. on magnetic surfaces � = const, if they
exist).

Then {V1(r), B1(r), p⊥1(r), p‖1(r), ρ1(r)} is a solution to incompressible CGL plasma
equilibria (2.10), (2.11), where

B1(r) = f (r)B(r) V1(r) = g(r)V(r) ρ1 = C0ρ(r)µ/g2(r)

p⊥1(r) = C0µP(r) + C1 + (C0 − f 2(r)/µ)B2(r)/2 (2.12)

p‖1(r) = C0µP(r) + C1 − (C0 − f 2(r)/µ)B2(r)/2

and f (r), g(r) are arbitrary functions constant on the magnetic field lines and streamlines.
C0, C1 are arbitrary constants.

The proof is given in appendix A.

Remark 1. Under the conditions of the theorem, the anisotropy factor

τ1 ≡ (p‖1 − p⊥1)
/

B1
2 = 1/µ − C0/f

2(r) (2.13)

is also constant on the magnetic field lines and streamlines, and the following relations hold:

p⊥1(r) = C0µP(r) + C1 − τ1(r)B1
2(r)/2

p‖1(r) = C0µP(r) + C1 + τ1(r)B1
2(r)/2.

(2.14)

Remark 2. We note that the transformations (2.12) preserve the topology of plasma config-
urations. All CGL solutions obtained from non-Beltrami MHD equilibria using theorem 1
have the same magnetic surfaces as the original MHD equilibrium.

2.2. Transformations for static equilibria

Let us rewrite the above theorem for the case of static plasma equilibria. In the case V = 0,
the MHD equilibrium equations (2.1)–(2.3) take the form

curl B × B = µ grad P div B = 0 (2.15)

and the CGL equations can be rewritten as(
1

µ
− τ

)
curl B × B = grad p⊥ + τ grad

B2

2
+ B(B · grad τ) div B = 0. (2.16)

From theorem 1, follows

Corollary 1. Let {B(r), P (r)} be a solution of the static isotropic plasma equilibrium system
(2.15). Then B1(r), p⊥(r), p‖(r) is a solution to the static CGL plasma equilibrium system
(2.16), where

B1(r) = f (r)B(r)

p⊥1(r) = C0µP(r) + C1 + (C0 − f 2(r)/µ)B2(r)/2 (2.17)

p‖1(r) = C0µP(r) + C1 − (C0 − f 2(r)/µ)B2(r)/2.

Remark 3. The above corollary can be directly used to construct a wide variety of anisotropic
plasma equilibrium solutions of different topologies. Indeed, starting with any harmonic
function h(r) : �h(r) = 0 and using a corresponding vacuum magnetic field B = grad h(r),
one can construct non-degenerate CGL plasma equilibria.



Exact anisotropic MHD equilibria 7597

2.3. Physical conditions and stability of new solutions

Let us describe the natural physical conditions for any isotropic and anisotropic MHD
equilibrium solutions.

The solutions in a bounded domain D with the boundary ∂D should satisfy the following
conditions:

0 � P |D � Pmax (for anisotropic plasmas, 0 � p‖|D, p⊥|D � Pmax)

0 � B2|D � B2
max 0 � V2|D � V2

max 0 � ρ|D � ρmax

n · B|∂D = 0

n · V|∂D = 0 or V|∂D = 0.

(2.18)

For an unbounded domain D, the natural conditions are

0 � P |D � Pmax (for anisotropic plasmas, 0 � p‖|D, p⊥|D � Pmax)

0 � B2|D � B2
max 0 � V2|D � V2

max 0 � ρ|D � ρmax

P (or p‖, p⊥), B2, V2, ρ → const at |r| → ∞.

(2.19)

For localized solutions in vacuum, the asymptotic constants must be zero, and the magnetic
field B and the velocity V should decrease at infinity quickly enough to give finite total energy∫

D

(
ρV2

2
+

B2

2µ

)
dV < ∞. (2.20)

For solutions in vacuum with the domain infinite in a given dimension z (e.g., models
of astrophysical jets), the above relations should be satisfied in every layer z1 < z < z2.
All magnetic field lines and plasma current lines should be bounded in the cylindrical radial
variable r.

If the free functions f (r), g(r) in the transformations (2.12) are separated from zero, then
the transformed anisotropic solutions retain the boundedness of the original solution. The
functions f (r), g(r) in every particular model must be chosen so that the new anisotropic
solution has proper asymptotics at |r| → ∞.

Now we address the question of stability of the anisotropic equilibrium solutions (2.12).
Though no universal test of overall stability of MHD and CGL equilibria is available, explicit
criteria for certain types of instabilities are known. Under the assumption of double-adiabatic
behaviour of plasma [2], the criterion for the fire-hose instability is [10]

p‖ − p⊥ >
B2

µ
(2.21)

(or, equivalently, τ > 1/µ), and for the mirror instability

p⊥

(
p⊥
6p‖

− 1

)
>

B2

2µ
. (2.22)

Now we explicitly check these conditions for the transformed CGL equilibria
{V1(r), B1(r), p⊥1(r), p‖1(r), ρ1(r)} (2.12), supposing that the original isotropic MHD
equilibrium configuration {V(r), B(r), P (r), ρ(r)} satisfies physical conditions (2.18) or
(2.19).

From (2.12), for the new solutions

p‖1 − p⊥1 =
(

1

µ
− C0

f 2

)
B1

2 = B2f 2

µ
− C0B2.
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Hence the fire-hose instability is not present when

B2f 2

µ
− C0B2 � B1

2

µ
= B2f 2

µ
.

Thus any choice of C0 � 0 prevents the new solutions from having the fire-hose instability.
Now we consider the sufficient condition for the mirror instability (2.22). We define

Q = C0µP(r) + C1, and for stability demand

p⊥1

(
p⊥1

6p‖1
− 1

)
� B1

2

2µ

which can be rewritten as

−
(

5Q +
7

2

(
f 2

µ
− C0

)
B2

)(
Q − 1

2

(
f 2

µ
− C0

)
B2

)
� 3f 2B2

2µ

(
2Q + B2

(
f 2

µ
− C0

))
.

This is a quadratic inequality with respect to an unknown function z = f 2(r) constant on
magnetic field lines and plasma streamlines:

B4

2µ
z2 − 4B2(2Q + C0B2)z − 1

2
µ(10Q − 7C0B2)(2Q + C0B2) � 0. (2.23)

From this inequality we determine the possible range of f 2(r). If we take C1 � 0 (and
thus Q � 0 for P � 0) and assume B2 � 0 in the plasma domain, then the discriminant
D = 3B4(2Q + C0B2)(14Q + 3C0B2) is non-negative, and the roots are

z1,2 = 4µ

B2
(2Q + C0B2) ∓ µ

√
D

B4
. (2.24)

If the original plasma equilibrium is static, then on every magnetic surface S, P |S =
const � 0, hence Q|S = const � 0, and it is easy to check that z1|S(|B|) is always concave
down, while z2|S(|B|) is concave up. Therefore under the physical assumptions of non-
negativity and boundedness of P and B2, on any magnetic surface S, maxSz1 < minSz2.

If the original equilibrium is not static, then the function Q is not constant on
magnetic surfaces, and it should be explicitly checked that on every surface the inequality
maxSz1 < minSz2 holds.

The values of f 2(r) on magnetic surfaces must be selected within the interval maxSz1 �
f 2(r)|S � minSz2, and thus the new CGL solution will not have the mirror instability. This is
the only limitation on the choice of the function f 2(r).

Remark 4. For any MHD equilibrium that satisfies natural physical conditions, by using the
transformations (2.12) one can construct infinitely many anisotropic CGL equilibria that are
free from the fire-hose instability. Every static MHD equilibrium can be transformed into an
infinite family of anisotropic equilibria free from the mirror instability.

3. An anisotropic model of astrophysical jets

Below we present anisotropic helically symmetric and non-symmetric models of astrophysical
jets. They are obtained by application of the transformations (2.12) to certain isotropic MHD
equilibria.

We start with helically symmetric [11] magnetic fields

Bh = ψu

r
er + B1ez + B2eφ B1 = αγψ − rψr

r2 + γ 2
B2 = αrψ + γψr

r2 + γ 2
. (3.1)
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Figure 1. A section of helically symmetric magnetic surfaces. A sample section (z = 0) of
the magnetic surfaces ψ(r, φ) = const for a generally non-symmetric anisotropic astrophysical
jet model (section 3). (The parameter values for the plot are a1 = −1, β = 0.1, γ = √

5/2,
α = 3/(2γ ).)

Here er , ez, eφ are unit vectors of the cylindrical coordinates (r, z, φ), ψ = ψ(r, u) is the flux
function, u = z − γφ, α = const, γ = const. In [12], the exact plasma equilibria (3.1),
curl B × B = µ grad P, div B = 0 were obtained, which correspond to the flux functions

ψNmn = e−βr2
(aNB0N(y) + rmBmn(y)(amn cos(mu/γ ) + bmn sin(mu/γ ))) (3.2)

where N,m, n are arbitrary integers � 0 satisfying the inequality 2N > 2n + m, and y =
2βr2. The plasma pressure is Ph = p0 − 2β2ψ2/µ, and the plasma velocity V = 0. The
functions Bmn(y) are polynomials [12].

The simplest exact solution (3.2) is defined for N = 1,m = 1, n = 0 and has the form

ψ110(r, z, φ) = e−βr2
(1 − 4βr2 + a1r cos(z/γ − φ)). (3.3)

Figure 1 shows the section z = 0 of the surfaces of its constant level: ψ110(r, z, φ) = const
for a1 = −1, β = 0.1, γ = √

5/2, α = 3/(2γ ).
We now apply the ‘anisotropizing’ transformations (corollary 1) to the static exact isotropic

solutions (3.1), (3.2), and obtain new static anisotropic equilibria (2.16)

Ba = f (r)Bh

p⊥a = C0µPh + C1 + (C0 − f 2(r)/µ)B2
h

/
2 (3.4)

p‖a = C0µPh + C1 − (C0 − f 2(r)/µ)B2
h

/
2

and f (r) is an arbitrary function constant on the magnetic field lines; C0 > 0, C1 are arbitrary
constants.
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(b)(a)

Figure 2. Comparison of pressure and magnetic field profiles in isotropic and anisotropic
astrophysical jet models. (a) The profiles of pressure along the x-axis for the astrophysical
jet model (a1 = −1, β = 0.1, γ = √

5/2, α = 3/(2γ )). Original isotropic pressure P: thin
solid line, anisotropic p‖a : thick dash line; p⊥a : thick solid line. Positive-pressure requirement
is satisfied. (b) The magnetic field magnitudes B2 and B2

a for isotropic (thin line) and anisotropic
(thick line) astrophysical jet model (the profile along the x-axis). Same parameters as in part (a).

Let us consider particular solutions from the family (3.4) in more detail.

(1) Anisotropic helically symmetric jets. We take the flux function in the simplest form
ψ = ψ110(r, z, φ), and choose a helically symmetric arbitrary function

f (r) = (C0 + 1/cosh(ψ2))1/2. (3.5)

The magnetic field and pressure functions are given by expressions (3.4).
Figure 2(a) represents the profiles of pressure along the x-axis (original isotropic

pressure Ph shown with a thin solid line, anisotropic p‖a with a thick dash line and p⊥a

with a thick solid line). Positive-pressure requirement is evidently satisfied.
In figure 2(b), the original isotropic and the transformed anisotropic magnetic field

magnitudes B2
h and Ba

2 along the x-axis are shown (isotropic with a thin solid line
and anisotropic with a thick solid line). The magnetic field is evidently bounded from
above, therefore, in accordance with stability considerations presented in section 2.3, the
presented sample solution is free from fire-hose and mirror instabilities.

Both figures use values C0 = 1.0, C1 = 0.01.
(2) Astrophysical jet model with no symmetries. The arbitrary function f (r) has only to

be constant on magnetic field lines, not necessarily on magnetic surfaces ψ = const
(cf corollary 1). In the family of solutions (3.4), the magnetic field lines all go to infinity
in the variable z [12]. Therefore, the function f (r) in this anisotropic solution depends
on two transversal variables, and the generic exact solutions (3.4) are non-symmetric.

As an example the flux function ψ = ψ110(r, z, φ) (3.3) and constants a1 = 0, β =
0.1, γ = √

5/2, α = 3/(2γ ) (this choice indeed yields a cylindrically symmetric flux
function). A simple computation shows that the general function of two variables

f (r) = F

(
r, φ − 2

√
10z

2r2 − 15

)
(3.6)

is constant on the lines of the magnetic field (3.1). Every magnetic field line winding
on a cylindrical surface ψ = const goes to infinity and is helically symmetric, but the
helical constant changes from line to line; therefore, the general anisotropic static plasma
equilibrium solution (3.4), (3.6) has no geometrical symmetries.
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4. Infinite-dimensional symmetries for anisotropic (CGL) plasma equilibria

4.1. The symmetry transforms

Recently Bogoyavlenskij [4, 5] found that the isotropic MHD equilibrium equations (2.1)–(2.3)
possess the following symmetries.

If {V(r), B(r), P (r), ρ(r)} is an MHD equilibrium, where the density ρ(r) is constant
on both magnetic field lines and streamlines, then {V1(r), B1(r), P1(r), ρ1(r)} is also an
equilibrium solution, where

V1 = b(r)
m(r)

√
µρ

B +
a(r)
m(r)

V

B1 = a(r)B + b(r)
√

µρV (4.1)

ρ1 = m2(r)ρ P1 = CP +
(
CB2 − B2

1

)/
(2µ).

Here

a2(r) − b2(r) = C = const

and a(r), b(r), c(r) are functions constant on both magnetic field lines and streamlines (i.e.
on magnetic surfaces � = const, when they exist).

These symmetries form an infinite-dimensional Abelian group [5]

Gm = Am ⊕ Am ⊕ R+ ⊕ Z2 ⊕ Z2 ⊕ Z2 (4.2)

where R+ is a multiplicative group of positive numbers, and Am is an additive Abelian group
of smooth functions in R

3 that are constant on magnetic surfaces. The group Gm has eight
connected components.

Below we present the symmetries of ideal anisotropic (CGL) plasma equilibria (2.10),
(2.11), which naturally generalize the above isotropic-case symmetries.

From now on we consider only plasma configurations free of the fire-hose instability, i.e.
for which 1/µ > τ in the whole domain (see section 2).

Theorem 2. Let {V(r), B(r), p⊥(r), p‖(r), ρ(r)} be a solution of the CGL equilibrium system
(2.10), (2.11), where the density ρ(r) and the anisotropy factor τ(r) (2.9) are constant on
both magnetic field lines and streamlines. Then {V1(r), B1(r), p⊥1(r), p‖1(r), ρ1(r)} is also
a solution, where

ρ1 = m2(r)ρ

V1 = b(r)
√

1/µ − τ

m(r)
√

ρ
B +

a(r)
m(r)

V

B1 = a(r)
n(r)

B +
b(r)

√
ρ

n(r)
√

1/µ − τ
V (4.3)

p⊥1 = Cp⊥ +

(
CB2 − B2

1

)
2µ

p‖1 = p‖n2(r)
B2

1

B2
+ p⊥

(
C − n2(r)

B2
1

B2

)
+

(
CB2 + B1

2(1 − 2n2(r))
)

2µ
.

Here

a2(r) − b2(r) = C = const

and a(r), b(r),m(r), n(r) are functions constant on both magnetic field lines and streamlines.
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Under the conditions of the theorem, the anisotropy factor τ(r) is transformed as follows:

τ1 ≡ p‖1 − p⊥1

B1
2 = 1

µ
− n2(r)

(
1

µ
− τ

)
.

The proof is given in appendix B.
The above symmetry transforms are applicable to any dynamic or static anisotropic CGL

plasma configuration with density ρ(r) and the anisotropy factor τ(r) constant on magnetic
field lines and streamlines. For example, it can be directly applied to static anisotropic
configurations that were obtained in section 3 to produce families of dynamic solutions.

Like the isotropic-case symmetries (4.1), the transformations (4.3) are invertible for
C �= 0:

CV = a(r)
m1(r)

V1 − b(r)
√

1/µ − τ1(r)

m1(r)
√

ρ1(r)
B1 CB = a(r)

n1(r)
B1 − b(r)

√
ρ1(r)

n1(r)
√

1/µ − τ1(r)
V1.

4.2. The structure of the arbitrary functions

The arbitrary functions a(r), b(r),m(r), n(r) must be constant on magnetic field lines and
plasma streamlines, and therefore their structure depends on the topology of the original
anisotropic MHD equilibrium configuration {V(r), B(r), τ (r), p⊥(r), ρ(r)}.

In the following topologies the structure of the unknown functions is evident:

(i) If the magnetic field B and velocity V of the original anisotropic MHD equilibrium
configuration are in every point tangent to magnetic surfaces, then the functions
a(r), b(r),m(r), n(r) must be constant on every such surface.

(ii) The magnetic field and velocity are collinear, and the field lines are closed loops or go
to infinity. Then the functions a(r), b(r),m(r), n(r) have to be constant on the plasma
streamlines.

(iii) The magnetic field and velocity are collinear, and their field lines are dense in some 3D
domain D. Then the functions a(r), b(r),m(r), n(r) are constant in D.

4.3. The group structure of the symmetry transforms

Consider the set G of all transformations (4.3) with C �= 0 and smooth a(x), b(x), m(x) and
n(x) constant on magnetic field lines and plasma streamlines, for a given anisotropic MHD
equilibrium. Each transformation is prescribed by a quadruple of functions (a, b,m, n) that
satisfy the conditions

a2(r) − b2(r) ≡ const = C �= 0 m(r) �= 0 n(r) �= 0.

The domain E for these transformations consists of all divergence-free incompressible
CGL equilibria that have the anisotropy factor τ constant on magnetic surfaces.

Consider a function h(r) constant on the lines of V and B of an initial equilibrium
configuration. This implies

B · grad h(r) = 0 V · grad h(r) = 0.

For the transformed ‘mixed’ vector fields V1 and B1 (4.3) one also has

B1 · grad h(r) = 0 V1 · grad h(r) = 0.

Therefore the function h(r) is also constant on the magnetic field lines and plasma streamlines
of the new plasma equilibrium configuration. This fact, together with the invertibility of the
transformations (4.3) for C �= 0, proves that the range of these transformations is the same as
their domain. Hence the composition of the transformations is well defined.
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We now show that the composition assigns on the set G the structure of an Abelian
group. Indeed, the composition of the transformations (4.3) is equivalent to the 4 × 4 matrix
multiplication


m2 0 0 0
0 n2 0 0

0 0 a2

√
ρ1

ρ2
b2

√
1/µ−τ1√

ρ2

0 0 b2

√
ρ1√

1/µ−τ2
a2

√
1/µ−τ1√
1/µ−τ2


 ×




m1 0 0 0
0 n1 0 0

0 0 a1

√
ρ

ρ1
b1

√
1/µ−τ√

ρ1

0 0 b1

√
ρ√

1/µ−τ1
a1

√
1/µ−τ√
1/µ−τ1




=




m 0 0 0
0 n 0 0

0 0 a
√

ρ

ρ2
b

√
1/µ−τ√

ρ2

0 0 b
√

ρ√
1/µ−τ2

a
√

1/µ−τ√
1/µ−τ2




where m = m2m1, n = n2n1, a = a2a1 + b2b1, b = b2a1 + a2b1. In other words,

(m2, n2, a2, b2) · (m1, n1, a1, b1) = (m2m1, n2n1, a2a1 + b2b1, b2a1 + a2b1) (4.4)

which implies C = a2 − b2 = C2C1 �= 0. The unit quadruple is (1, 1, 1, 0), and the inverse
transform corresponds to the quadruple (m, n, a, b)−1 = (m−1, n−1, C−1a,−C−1b). It is
evident that the above multiplication is commutative and associative. Hence the symmetries
(4.3) form an Abelian group G.

Let us describe the structure of the group G. We introduce the parametrization m(x) =
θ exp α(r), n(x) = λ exp β(r), where α(r), β(r) are smooth functions constant on the magnetic
field lines and plasma streamlines; θ, λ = ±1. For C = σk2, σ = ±1, k > 0, the equation
a2(r) − b2(r) = C is resolved in the form σ = 1: a(r) = ηk ch δ(r), b(r) = ηk sh δ(r);
σ = −1: a(r) = ηk sh δ(r), b(x) = ηk ch δ(r), where η = ±1 and δ(x) is an arbitrary
smooth function constant on the magnetic field lines and plasma streamlines. Hence each
transformation (4.3) corresponds to an octuple (α(r), β(r), δ(r), k, θ, λ, σ, η). The group
multiplication law then can be written in the form

(α1(r), β1(r), δ1(r), k1, θ1, λ1, σ1, η1) · (α2(x), β2(x), δ2(r), k2, θ2, λ2, σ2, η2)

= (α1(r) + α2(r), β1(r) + β2(r), δ1(r) + δ2(r), k1k2, θ1θ2, λ1λ2, σ1σ2, η1η2).

Hence the group G is the direct sum

G = Am ⊕ Am ⊕ Am ⊕ R+ ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2. (4.5)

Here R+ is the multiplicative group of positive numbers k > 0. The Am is the additive Abelian
group of smooth functions in R

3 that are constant on the magnetic field lines and plasma
streamlines for a given anisotropic MHD equilibrium. The group Am is a linear space and an
associative algebra with respect to the multiplication of functions. The group G evidently has
16 connected components.

The group Gm of the isotropic-case transformations (4.1), (4.2) constitutes an infinite-
dimensional subgroup of G.

The transformations (4.3) are a direct generalization of the symmetries (4.1) of
the isotropic equilibrium equations (2.1), (2.2). The isotropic-case and anisotropic-case
transformations coincide for the choice τ = 0, n(r) = 1.

Remark 5. If the original plasma configuration possesses the inequality 1/µ − τ > 0, and
thus is free of the fire-hose instability, then the transformed configuration is also fire-hose
stable when 1/µ − τ1 = n2(r)(1/µ − τ) > 0. The latter is always true if n(r) �= 0 in the
plasma domain. Therefore the symmetries (4.3) do not produce the fire-hose instability.
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4.4. Connections with the Lie point transformations

It was shown in [13] that the symmetries (4.1) of the isotropic plasma equilibrium system are
equivalent to certain Lie point transformations of that system, and can be obtained directly from
the Lie group analysis procedure, provided that the general solution topology (the existence
of magnetic surfaces to which vector fields B and V are tangent) and the incompressibility
condition are explicitly taken into account in the form of additional constraints:

ρ(r) = ρ(�(r)) grad(�(r)) · B = 0 grad(�(r)) · V = 0.

Here �(r) is a magnetic surface function (or, more generally, a function constant on
magnetic field lines and plasma streamlines.) In [14], it is proved that the symmetries of
the anisotropic plasma equilibria also are equivalent to some special infinite-dimensional Lie
point transformations.

5. Conclusions

In this paper we introduce two methods of constructing new anisotropic plasma equilibrium
configurations satisfying the Chew–Goldberger–Low equations (2.10), (2.11) [2].

In section 2 we present infinite-dimensional transformations between isotropic (MHD)
and anisotropic (CGL) plasma equilibria. These transformations can be applied to any static
plasma equilibrium and to a wide class of dynamic equilibria (those with density ρ constant on
plasma streamlines and magnetic field lines). Unlike the Bäcklund transforms, the presented
ones are expressed in the explicit form and depend on three spatial variables. The resulting
anisotropic solutions retain the topology of the original isotropic plasma equilibrium.

In section 2.2 we discuss the form of the transformations when they are applied to static
MHD equilibria (V = 0). It appears that the transformations can be applied even to degenerate
plasma equilibria—pure magnetic fields in vacuum—to produce non-degenerate CGL plasma
equilibria.

The boundary conditions and stability of the equilibrium configurations are studied in
section 2.3. We show that the anisotropic solutions obtained by applying the transformations
(2.12) can be made free of fire-hose and mirror instability by the proper choice of
transformation parameters.

In section 3 we construct exact CGL equilibria modelling anisotropic astrophysical jets.
It is based on the family of isotropic MHD equilibria derived in [12] and includes solutions
with no geometrical symmetries.

In section 4 we introduce a family of topology-dependent infinite-dimensional symmetries
(4.3) of anisotropic (CGL) incompressible plasma equilibrium equations. These symmetries
can be used to produce families of CGL equilibrium solutions in an explicit algebraic form.
They depend on three arbitrary functions that are constant on magnetic field lines and plasma
streamlines of the original anisotropic equilibrium. The transformations form an Abelian
group G = Am ⊕ Am ⊕ Am ⊕ R+ ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 (4.5) with 16 connected components.

The presented symmetries generalize the known symmetries (4.1) for the isotropic
incompressible MHD equilibria. The group Gm = Am ⊕ Am ⊕ R+ ⊕ Z2 ⊕ Z2 ⊕ Z2 (4.2) is a
subgroup of the group G (4.5).

The symmetries (4.3) depend on all three spatial variables r = (x, y, z) and break
geometrical symmetries, if the original equilibrium is field aligned and the field lines either
are closed curves or go to infinity.

Using these symmetries, one can construct dynamic CGL plasma equilibria from static
ones. The symmetries are shown to create solutions that are free from the fire-hose instability.
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Similar to the symmetries of isotropic plasma equilibria, the anisotropic equilibrium
symmetries (4.3) are equivalent to certain Lie point transformations of the CGL equilibrium
system. The corresponding Lie point symmetries can be found by the general Lie group
analysis of the CGL equilibrium system only if the existence of magnetic surfaces and the
incompressibility condition are explicitly taken into account.

Appendix A. Proof of theorem 1

Let us insert the quantities (2.12) into the system of CGL plasma equilibrium equations (2.10),
(2.11), assuming that {V(r), B(r), P (r), ρ(r)} is an anisotropic MHD equilibrium and satisfies
(2.1)–(2.3).

To simplify the notation, we do not write the dependence of functions on r explicitly.
The functions f (r), g(r) are constant on the magnetic field lines and streamlines, therefore

div B1 = f div B + B grad f = 0 div V1 = g div V + V grad g = 0 (A.1)

Also, using a vector calculus identity

curl(sq) = s curl q + grad(s) × q (A.2)

we conclude that

curl(V1 × B1) = 0 (A.3)

therefore equations (2.11) are satisfied.
To prove that (2.10) holds, we first observe that

ρ1V1 × curl V1 −
(

1

µ
− τ1

)
B1 × curl B1 = ρ1g

2V × curl V −
(

1

µ
− τ1

)
f 2B × curl B

+ V2ρ1g grad(g) − B2

(
1

µ
− τ1

)
f grad(f )

= C0µ

(
ρV × curl V − 1

µ
B × curl B

)
+ V2ρ1g grad(g) − B2

(
1

µ
− τ1

)
f grad(f )

= C0µ

(
grad P + ρ grad

V2

2

)
+ V2ρ1g grad(g) − B2

(
1

µ
− τ1

)
f grad(f )

= C0µ grad P + C0ρµ grad V2/2 +
C0ρµV2

2g2
grad g2 − B1

2

2
grad(τ1).

According to the remark (2.13), τ1 is constant on both magnetic field lines and streamlines,
therefore

B1 · grad τ1 = 0.

The right-hand side of (2.10) is

grad p⊥1 + ρ1 grad
V1

2

2
+ τ1 grad

B1
2

2
= grad

(
p⊥1 + ρ1

V1
2

2
+ τ1

B1
2

2

)

− B1
2

2
grad(τ1) − V1

2

2
grad(ρ1) = C0µ grad P + C0ρµ grad V2/2

+
C0ρµV2

2g2
grad g2 − B1

2

2
grad(τ1)

and is identically equal to the left-hand side. Hence the theorem is proved.



7606 A F Cheviakov and O I Bogoyavlenskij

Appendix B. Proof of theorem 2

First, we remark that from pressure transformation formulae (4.3) it follows that

τ1 ≡ p‖1 − p⊥1

B1
2 = 1

µ
− n2(r)

(
1

µ
− τ

)
.

Now let w(x) be any function that is constant on magnetic field lines and plasma
streamlines. Then

B · grad w(x) = 0 V · grad w(x) = 0. (B.1)

For any smooth vector field A, a vector calculus identity holds

A × curl A = −(A · grad )A + grad(A2/2). (B.2)

Using it, we rewrite equation (2.10) under consideration, assuming the density ρ(r) and the
anisotropy factor τ(r) (2.9) constant on both magnetic field lines and streamlines, as

ρ(V · grad )V −
(

1

µ
− τ

)
(B · grad )B = − grad

(
p⊥ +

B2

2µ

)
. (B.3)

In (4.3), the coefficients at B, V in the formulae defining B1, V1 are evidently constant on
magnetic field lines and plasma streamlines.

Using formulae (B.1), (B.2), we get

ρ(V · grad )V −
(

1

µ
− τ

)
(B · grad )B + grad

(
p⊥ +

B2

2µ

)
= (a2(r) − b2(r))

×
(

ρ(V1 · grad )V1 −
(

1

µ
− τ1

)
(B1 · grad )B1 + grad

(
p⊥1 +

B1
2

2µ

))
.

(B.4)

Thus the functions ρ1, B1, V1, p⊥1, p‖1 satisfy equation (B.3) and therefore the CGL
equilibrium equation (2.10).

The equations div V1 = 0, div B1 = 0 are evidently satisfied due to (B.1).
Now consider the quantity

V1 × B1 = a2(r) − b2(r)
m(r)n(r)

(V × B).

The scalar factor on the left-hand side is constant on magnetic field lines and plasma
streamlines, therefore (B.1) applies. Hence

curl(V1 × B1) = a2(r) − b2(r)
m(r)n(r)

curl(V × B) + grad

(
a2(r) − b2(r)

m(r)n(r)

)
· (V × B) = 0.

Thus all anisotropic CGL equilibrium equations (2.10), (2.11) are satisfied by the
transformed quantities (4.3), and the theorem is proved.
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